CSE 451: Operating Systems
Winter 2013

Memory Management

Gary Kimura

Simple Programs, Simple Memory

« Remember back to simple programs and the memory

model they use.

« They live in a virtual world, an address space not based on
physical memory (i.e., reality).

You TAKE THE BLUE oNE AND
THE SToRY EnMDS. YOU WAKE
IN YouR BED AMD Yolr BELEVE
WHATEVER YoU WANT To BELIEVE.

Yol TAKE THE RED onE AMD
YOU STAY W WorDERLAND
AND I SHow You How DEEF
THE RABBIT-HOLE GOES.

CAN'T You

IS THE EAT JELLY

| WHAT'S 'T RED oMNE BEANS LKE
| GONE TG tHindows ~ NORMAL

| BE, NE6” ©OR LINUX?

Iﬁﬁﬂhhﬁ&.

.......
aaaaaa

ST e e

R R R R e v R TR A e e e

FE-D'II:‘LE !

Goals of memory management

 Allocate scarce memory resources among competing

processes, maximizing memory utilization and system
throughput

* Provide a convenient abstraction for programming (and
for compilers, etc.)
* Provide isolation between processes

— we have come to view “addressability” and “protection” as
Inextricably linked, even though they’re really orthogonal

Tools of memory management

Base and limit registers

Swapping

Paging (and page tables and TLBs)

Segmentation (and segment tables)

Page/segment fault handling => Virtual memory

The policies that govern the use of these mechanisms

Today’s desktop and server systems

« The basic abstraction that the OS provides for memory
management is virtual memory (VM)

— VM enables programs to execute without requiring their entire
address space to be resident in physical memory

 program can also execute on machines with less RAM than it
“needs”

— many programs don’t need all of their code or data at once (or
ever)

* e.g., branches they never take, or data they never read/write

 no need to allocate memory for it, OS should adjust amount
allocated based on run-time behavior

— virtual memory isolates processes from each other

* 0One process cannot name addresses visible to others; each
process has its own isolated address space

 Virtual memory requires hardware and OS support
— MMU’s, TLB's, page tables, page fault handling, ...

» Typically accompanied by swapping, and at least limited
segmentation

A trip down Memory Lane ...

« Why?
— Because it is instructive

— Because embedded processors (98% or more of all processors)
typically do not have virtual memory

 First, there was job-at-a-time batch programming

— programs used physical addresses directly

— OS loads job (perhaps using a relocating loader to “offset” branch
addresses), runs it, unloads it

— what if the program would not fit into memory?
« manual overlays!

« Swapping
— save a program’s entire state (including its memory image) to disk
— allows another program to be run

— first program can be swapped back in and re-started right where it
was

 The first timesharing system, MIT’s “Compatible Time
Sharing System” (CTSS), was a uni-programmed swapping
system
— only one memory-resident user
— upon request completion or quantum expiration, a swap took place
— slow but it worked!

Then came multiprogramming
— multiple processes/jobs in memory at once
* to overlap 1/0 and computation
— memory management requirements:

* protection: restrict which addresses processes can use, so they
can’t stomp on each other

« fast translation: memory lookups must be fast, in spite of the
protection scheme

« fast context switching: when switching between jobs,
updating memory hardware (protection and translation) must
be quick

Virtual addresses for multiprogramming

« To make it easier to manage memory of multiple
processes, make processes use virtual addresses

— virtual addresses are independent of location in physical memory
(RAM) where referenced data lives

 OS determines location in physical memory
— Instructions issued by CPU reference virtual addresses
 ¢.g., pointers, arguments to load/store instructions, PC ...

— virtual addresses are translated by hardware into physical addresses
(with some setup from OS)

10

« The set of virtual addresses a process can reference is its
address space

— many different possible mechanisms for translating virtual
addresses to physical addresses
« Note: We are not yet talking about paging, or virtual
memory — only that the program issues addresses in a
virtual address space, and these must be “adjusted” to
reference memory (the physical address space)

— for now, think of the program as having a contiguous virtual
address space that starts at 0, and a contiguous physical address
space that starts somewhere else

11

Old technique #1: Fixed partitions

» Physical memory is broken up into fixed partitions
— partitions may have different sizes, but partitioning never changes
— hardware requirement: base register, limit register
» physical address = virtual address + base register
* base register loaded by OS when it switches to a process
— how do we provide protection?
* 1f (physical address > base + limit) then... ?

« Advantages
— Simple
* Problems
— Internal fragmentation: the available partition is larger than what

was requested
— external fragmentation: two small partitions left, but one big job —

what sizes should the partitions be??
12

Mechanics of fixed partitions

physical memory

0
limit register base register partition O
2K P2’s base: 6K 2K
partition 1
Y Y 6K
offset ’)\ yes =® » | partition 2
virtual address 8K
no
_ partition 3
raise
protection fault 12K

13

Old technique #2: Variable partitions

« Obvious next step: physical memory is broken up into
partitions dynamically — partitions are tailored to programs
— hardware requirements: base register, limit register
— physical address = virtual address + base register
— how do we provide protection?
* 1f (physical address > base + limit) then... ?

« Advantages
— o internal fragmentation
 simply allocate partition size to be just big enough for process
(assuming we know what that is!)
* Problems
— external fragmentation

« as we load and unload jobs, holes are left scattered throughout
physical memory

« slightly different than the external fragmentation for fixed 1,4
partition systems

Mechanics of variable partitions

limit register

base register

P3’s size

P3’s base

v

es
offset —><<? y
virtual address
no
raise

protection fault

physical memory

partition O

partition 1

partition 2

partition 3

partition 4

15

Dealing with fragmentation

Swap a program out

Re-load it, adjacent to another

Adjust its base register
“Lather, rinse, repeat”
Ugh

partition O

partition 1

partition 2

partition 3

partition 4

partition O

partition 1

partition 2

partition 3

partition 4

16

Modern technique: Paging

 Solve the external fragmentation problem by using fixed
sized units in both physical and virtual memory

virtual address space _
physical address space

Ege frame O
page 1 frame 1
PEgS - frame 2
page 3

frame Y

page X

User’s perspective

Processes view memory as a contiguous address space
from bytes 0 through N
— virtual address space (VAS)

In reality, virtual pages are scattered across physical
memory frames — not contiguous as earlier

— virtual-to-physical mapping

— this mapping is invisible to the program

Protection is provided because a program cannot reference
memory outside of its VAS

— the virtual address OXDEADBEEF maps to different physical
addresses for different processes

Note: Assume for now that all pages of the address space
are resident in memory — no “page faults”

18

Address translation

« Translating virtual addresses
— avirtual address has two parts: virtual page number & offset
— virtual page number (VPN) is index into a page table
— page table entry contains page frame number (PFN)
— physical address is PFN::offset

« Page tables
— managed by the OS
— map virtual page number (VPN) to page frame number (PFN)
« VPN is simply an index into the page table
— one page table entry (PTE) per page in virtual address space
 i.e.,,one PTE per VPN

Mechanics of address translation

virtual address

virtual page # | offset

physical memory

page
page table frame O
page
frame 1
page
frame 2
page
frame 3

physical address

v

— | page frame # — | page frame # | offset

page
frame Y

20

Example of address translation

Assume 32 bit addresses

— assume page size is 4KB (4096 bytes, or 212 bytes)
— VPN is 20 bits long (22° VPNs), offset is 12 bits long

Let’s translate virtual address 0x13325328

— VPN is 0x13325, and offset is 0x328

— assume page table entry 0x13325 contains value 0x03004
 page frame number is 0x03004
« VPN 0x13325 maps to PFN 0x03004

— physical address = PFN::offset = 0x03004328

21

Page Table Entries (PTES)

1 1 1 2 20
prot page frame number

PTE’s control mapping

— the valid bit says whether or not the PTE can be used
» says whether or not a virtual address is valid
« it is checked each time a virtual address is used

— the referenced bit says whether the page has been accessed
e itis set when a page has been read or written to

— the modified bit says whether or not the page is dirty
* it 1s set when a write to the page has occurred

— the protection bits control which operations are allowed
e read, write, execute

— the page frame number determines the physical page
 physical page start address = PFN

22

Paging advantages

« Easy to allocate physical memory
— physical memory is allocated from free list of frames
» to allocate a frame, just remove it from the free list
— external fragmentation is not a problem!
« managing variable-sized allocations is a huge pain in the neck
— “buddy system”

 Leads naturally to virtual memory
— entire program need not be memory resident
— take page faults using “valid” bit

— but paging was originally introduced to deal with external
fragmentation, not to allow programs to be partially resident

23

Paging disadvantages

 Can still have internal fragmentation
— process may not use memory in exact multiples of pages

« Memory reference overhead
— 2 references per address lookup (page table, then memory)
— solution: use a hardware cache to absorb page table lookups
» translation lookaside buffer (TLB) — next class

« Memory required to hold page tables can be large
— need one PTE per page in virtual address space
— 32 bit AS with 4KB pages = 220 PTEs = 1,048,576 PTEs
— 4 bytes/PTE = 4MB per page table
« OS’s typically have separate page tables per process
« 25 processes = 100MB of page tables
— solution: page the page tables (!!!)

Segmentation
(We will be back to paging soon!)

Paging
— mitigates various memory allocation complexities (e.g.,
fragmentation)
— view an address space as a linear array of bytes
— divide it into pages of equal size (e.g., 4KB)
— use a page table to map virtual pages to physical page frames
 page (logical) => page frame (physical)
Segmentation
— partition an address space into logical units
« stack, code, heap, subroutines, ...
— avirtual address is <segment #, offset>

25

What's the point?

« More “logical”

— absent segmentation, a linker takes a bunch of independent
modules that call each other and linearizes them

— they are really independent; segmentation treats them as such

 Facilitates sharing and reuse
— asegment is a natural unit of sharing — a subroutine or function

A natural extension of variable-sized partitions
— variable-sized partition = 1 segment/process
— segmentation = many segments/process

26

Hardware support

« Segment table
— multiple base/limit pairs, one per segment
— segments named by segment #, used as index into table
» a virtual address is <segment #, offset>

— offset of virtual address added to base address of segment to yield
physical address

27

Segment lookups

segment table

—

segment #

offset

virtual address

base

> limit

<? yes
no
raise

protection fault

v

physical memory

segment O

segment 1

segment 2

©,

v

segment 3

segment 4

28

Pros and cons

* Yes, It’s “logical” and it facilitates sharing and reuse

« But it has all the horror of a variable partition system

— except that linking is simpler, and the “chunks” that must be
allocated are smaller than a “typical” linear address space

 What to do?

29

Combining segmentation and paging

« Can combine these techniques
— x86 architecture supports both segments and paging

« Use segments to manage logical units
— segments vary in size, but are typically large (multiple pages)

« Use pages to partition segments into fixed-size chunks
— each segment has its own page table
« there is a page table per segment, rather than per user address space

— memory allocation becomes easy once again
 no contiguous allocation, no external fragmentation

Segment # Page # Offset within page

N— g
—

Offset within segment

Windows Virtual Address Space Layout
(32 bit OS)

« Divided into 2 areas

— 0x00000000 to Ox7FFFFFFF — user space

— 0x80000000 to OXFFFFFFFF — system space
 Separate user space for each process
» A processes share the same system space

31

